Tutorials

Building Your First AI-Powered Application: A Complete Guide

Step-by-step tutorial on creating intelligent applications using modern AI frameworks and APIs.

Hamza Malikx
Dec 12, 2024
12 min read
3.1k
45

Building Your First AI-Powered Application: A Complete Guide

Creating AI-powered applications has never been more accessible. In this comprehensive tutorial, we'll walk through building a complete AI application from scratch, covering everything from setup to deployment.

What You'll Build

We'll create a smart content analyzer that can:

  • Analyze text sentiment
  • Extract key topics
  • Generate summaries
  • Provide content recommendations

Prerequisites

Before we start, make sure you have:

  • Basic knowledge of JavaScript/TypeScript
  • Node.js installed on your machine
  • An OpenAI API key
  • A code editor (VS Code recommended)

Project Setup

1. Initialize Your Project

mkdir ai-content-analyzer cd ai-content-analyzer npm init -y

2. Install Dependencies

npm install next react react-dom typescript @types/react @types/node npm install openai axios cheerio npm install -D tailwindcss postcss autoprefixer

3. Configure Environment Variables

Create a .env.local file:

OPENAI_API_KEY=your_openai_api_key_here

Building the Core Components

API Route for AI Processing

// pages/api/analyze.ts import { NextApiRequest, NextApiResponse } from 'next'; import { OpenAI } from 'openai'; const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY, }); export default async function handler( req: NextApiRequest, res: NextApiResponse ) { if (req.method !== 'POST') { return res.status(405).json({ error: 'Method not allowed' }); } const { text, analysisType } = req.body; try { let prompt = ''; switch (analysisType) { case 'sentiment': prompt = `Analyze the sentiment of this text and provide a score from -1 (very negative) to 1 (very positive): "${text}"`; break; case 'summary': prompt = `Provide a concise summary of this text: "${text}"`; break; case 'topics': prompt = `Extract the main topics from this text: "${text}"`; break; default: prompt = `Analyze this text: "${text}"`; } const completion = await openai.chat.completions.create({ model: 'gpt-3.5-turbo', messages: [{ role: 'user', content: prompt }], max_tokens: 500, }); const result = completion.choices[0].message.content; res.status(200).json({ result }); } catch (error) { console.error('Error:', error); res.status(500).json({ error: 'Analysis failed' }); } }

Conclusion

Building AI-powered applications is an exciting journey that opens up countless possibilities. With the foundation you've built here, you can expand and customize your application to meet specific needs and requirements.

Happy coding, and welcome to the world of AI development!

Tags

#Tutorial#AI#Next.js#OpenAI#Development

Related Articles

Tutorials

Understanding Transformer Architecture in Modern AI

A deep dive into the architecture that powers ChatGPT, BERT, and other revolutionary AI models.

6 min read
Tutorials

Building Scalable AI APIs with Python and FastAPI

Learn how to create production-ready AI APIs that can handle millions of requests.

10 min read
logo

2022 © Vistabyte - All Rights Reserved